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Preface

Though random matrices were first encountered in mathematical
statistics by Hsu, Wishart, and others, intensive study of their
properties in connection with nuclear physics began with the work
of Wigner in the 1950’s. Much material has accumulated since then,
and it was felt that it should be collected. A reprint volume to satisfy
this need has been edited by C. E. Porter with a critical introduction
(see References); nevertheless, the feeling was that a book containing
a coherent treatment of the subject would be welcome.

We make the assumption that the local statistical behavior of the
energy levels of a sufficiently complicated system is simulated by
that of the eigenvalues of a random matrix. Chapter 1 is a rapid
survey of our understanding of nuclear spectra from this point of
view. The discussion is rather general, in sharp contrast to the precise
problems treated in the rest of the book. In Chapter 2 an analysis of
the usual symmetries that a quantum system might possess is carried
out, and the joint probability density function for the various matrix
elements of the Hamiltonian is derived as a consequence. The
transition from matrix elements to eigenvalues is made in Chapter 3
and the standard arguments of classical statistical mechanics are
applied in Chapter 4 to derive the eigenvalue density. An unproved
conjecture is also stated. In Chapter 5 the method of integration
over alternate variables is presented, and an application of the Fredholm
theory of integral equations is made to the problem of eigenvalue
spacings. The methods developed in Chapter 5 are basic to an under-
standing of most of the remaining chapters. Chapter 6 deals with
the correlations and spacings for less useful cases. A Brownian
motion model is described in Chapter 7. Chapters 8 to 11 treat
circular ensembles; Chapters 8 to 10 repeat calculations analogous
to those of Chapters 4 to 7. The integration method discussed in
Chapter 11 originated with Wigner and is being published here for
the first time. The theory of non-Hermitian random matrices,
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though not applicable to any physical problems, is a fascinating
subject and must be studied for its own sake. In this direction an
impressive effort by Ginibre is described in Chapter 12. For the
Gaussian ensembles the level density in regions where it is very low
is discussed in Chapter 13. The investigations of Chapter 16 and
Appendices A.29 and A.30 were recently carried out in collaboration
with Professor Wigner at Princeton University. Chapters 14, 15,
and 17 treat a number of other topics. Most of the material in the
appendices is either well known or was published elsewhere and is
collected here for ready reference. It was surprisingly difficult to
obtain the proof contained in A.21, while A.29, A.30, and A.31 are
new.

It is my pleasant duty to thank Professor C. Bloch, Professor
F. J. Dyson, and Professor E. P. Wigner to whom I owe so much by
way of education and inspiration. I have made use of the cited literature
and in particular published as well as unpublished works of E. P.
Wigner, F. J. Dyson, and M. Gaudin. I am thankful to the editors of
the various publications for allowing me to do so. This book was
written in sections at Tata Institute of Fundamental Research,
Bombay, the Indian Institute of Technology, Kanpur, Delhi Uni-
versity, Argonne National Laboratory, and Princeton University.
The lectures given at the State University of New York at Stony
Brook, Long Island, were helpful in the initial stages. I am grateful
to all these institutions for their hospitality. My thanks are due to my
colleagues H. S. Mani, N. Rosenzweig, and P. K. Srivastava for their
critical comments. A few additions and changes were made at almost
every stage of the process of publication and I am thankful to the
staff of Academic Press for their cooperation.

October, 1967 M. L. MEHTA
Saclay, France



1 / Introduction

1.1. The Need to Study Random Matrices

The experimental nuclear physicists have been and still are
collecting vast amounts of data concerning the excitation spectra of
various nuclei [Garg et al., 1; Rosen et al., 1]. The ground state and
low-lying excited states have been impressively explained in terms
of an independent particle model where the nucleons are supposed
to move freely in an average potential well [Mayer and Jensen, 1;
Kisslinger and Sorenson, 1]. As the excitation energy increases, more
and more nucleons are thrown out of the main body of the nucleus,
and the approximation of replacing their complicated interactions with
an average potential becomes more and more inaccurate. At still
higher excitations the nuclear states are so dense and the intermixing
is so strong that it is a hopeless task to try to explain the individual
states; but when the complications increase beyond a certain point
the situation becomes hopeful again, for we are no longer required
to explain the characteristics of every individual state but only their
average properties, which is much simpler.

The average behavior of the various energy levels is of prime
importance in the study of nuclear reactions. In fact, nuclear reactions
may be put into two major classes—fast and slow. In the first case
a typical reaction time is of the order of the time taken by the incident
nucleon to pass through the nucleus. The wavelength of the incident
nucleon is much smaller than the nuclear dimensions, and the time
it spends inside the nucleus is so short that it interacts with only a
few nucleons inside the nucleus. A typical example is the head-on
collision with one nucleon in which the incident nucleon hits and
ejects a nucleon, thus giving it almost all its momentum and energy.
Consequently, in such cases the coherence and interference effects
between incoming and outgoing nucleons are strong.

Another extreme is provided by the slow reactions in which the

1



2 1.1. The Need to Study Random Matrices

typical reaction times are two to three orders of magnitude larger.
The incident nucleon is trapped and all its energy and momentum
are quickly distributed among the various constituents of the target
nucleus. It takes a long time before enough energy is again con-
centrated on a single nucleon to ejectit. The compound nucleus lives
long enough to forget the manner of its formation, and the subsequent
decay is therefore independent of the way in which it was formed.

In the slow reactions, unless the energy of the incident neutron is
very sharply defined, a large number of neighboring energy levels
of the compound nucleus are involved, hence the importance of an
investigation of their average properties, such as the distribution of
neutron and radiation widths, level spacings, and fission widths. It is
natural that such phenomena, which result from complicated
many-body interactions, will give rise to statistical theories. We shall
concentrate mainly on the average properties of nuclear levels such
as level spacings.

According to quantum mechanics, the energy levels of a system
are supposed to be described by the eigenvalues of a Hermitian
operator, called the Hamiltonian. The energy-level scheme of a
system consists in general of a continuum and a certain, perhaps a
large, number of discrete levels. The Hamiltonian of the system
should have the same eigenvalue structure and therefore must operate,
in an infinite dimensional Hilbert space. To avoid the difficulty of
working with an infinite dimensional Hilbert space, we make approxi-
mations amounting to a truncation keeping only the part of the Hilbert
space that is relevant to the problem at hand and either forgetting
about the rest or taking its effect in an approximate manner on the part
considered. Because we are interested in the discrete part of the
energy-level schemes of various quantum systems, we approximate
the true Hilbert space by one having a finite, though large, number of
dimensions. Choosing a basis in this space, we represent our Hamil-
tonians by finite dimensional matrices. If we can solve the eigenvalue
equation,

H‘Pi = Eiqji )

we shall get all the eigenvalues and eigenfunctions of the system,
and any physical information can then be deduced, in principle,
from this knowledge. In the case of the nucleus, however, there are
two difficulties. First, we do not know the Hamiltonian and, second,
even if we did, it would be far too complicated to attempt to solve it.
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Therefore from the very beginning we shall be making statistical
hypotheses on H, compatible with the general symmetry properties.
Choosing a complete set of functions as basis, we represent the
Hamiltonian operators H as matrices. The elements of these matrices
are random variables whose distributions are restricted only by the
general symmetry properties we might impose on the ensemble of
operators. Statistical theory does not predict the detailed level sequence
of any one nucleus, but it does describe the general appearance and the
degree of irregularity of the level structure that is expected to occur
in any nucleus, which is too complicated to be understood in detail.

In classical statistical mechanics a system may be in any one of the
many possible states, but one does not ask in which particular state
a given system is. Here we shall renounce knowledge of the system
itself. As in orthodox statistical mechanics we shall consider an
ensemble of Hamiltonians, each of which could describe a different
nucleus. There is a reasonable expectation, though no rigorous
mathematical proof, that a system under observation will be described
correctly by an ensemble average. This expectation is strong because
the system might be one of a huge variety of systems, and very few
of them will deviate much from a properly chosen ensemble average.
On the other hand, our assumption that the ensemble average correctly
describes a particular system, say the U2% nucleus, is not compelling.
In fact, if this particular nucleus turns out to be far removed from the
ensemble average, it will show that the U2?*® Hamiltonian possesses
specific properties of which we are not aware. This, then, will prompt
us to try to discover the nature and origin of these properties
[Dyson, 1].

Wigner was the first to propose in this connection the hypothesis
alluded to, namely that the local statistical behavior of levels in a
simple sequence is identical with the eigenvalues of a random matrix.
A simple sequence is one whose levels all have the same spin, parity,
and other strictly conserved quantities, if any, which result from the
symmetry of the system. The corresponding symmetry requirements
are to be imposed on the random matrix. Porter and Rosenzweig
were the early workers in the field who analyzed the nuclear experi-
mental data made available by Hughes, Harvey, Rosen, and co-workers
and the atomic data compiled by C. E. Moore [1]. They found that
the occurrence of two levels close to each other in a simple sequence
is a rare event. They also used the computer to generate and
diagonalize a large number of random matrices. This Monte Carlo
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analysis indicated the correctness of Wigner’s hypothesis. In fact, it
indicated more; the density and the spacing distribution of eigenvalues
of real symmetric matrices are independent of many details of the
distribution of individual matrix elements. All that is required is
the same distribution for all diagonal elements and that the off-diagonal
elements be distributed symmetrically about the zero mean and have
the same mean square deviation. This independence is to be expected
as well in the case of complex Hermitian or self-dual quaternion
matrices, but apart from this numerical evidence and a few heuristic
arguments of Wigner no rigorous derivation of this fact has yet been
found. The case of the Gaussian distributions of matrix elements is still
the only one treated analytically by Hsu, Mehta, Gaudin, Dyson,
Bronk, Ginibre, and others, and we have described these developments
in great detail in the following pages. I'rom a group-theoretical analysis
Dyson [5] found that an irreducible ensemble of matrices, invariant
under a symmetry group G, necessarily belongs to one of three
classes, named by him orthogonal, unitary, and symplectic. We shall
not go into these elegant group-theoretical arguments but shall devote
enough space to the study of the circular ensembles introduced by
Dyson. It is remarkable that standard thermodynamics can be applied
to obtain certain results which otherwise would be difficult to derive.
A theory of the Brownian motion of matrix elements has also been
created by Dyson thus rederiving a few known results. However,
it remains largely a curiosity.

The physical properties of metals depend characteristically on
their excitation spectra. In bulk metal at high temperatures the
electronic energy levels lie very near to one another and are broad
enough to overlap and form a continuous spectrum. As the sample
gets smaller, this spectrum becomes discrete, and as the temperature
decreases the widths of the individual levels decrease. If the metallic
particles are minute enough and at low enough temperatures, the
spacings of the electronic energy levels may eventually become much
larger than the other energies, such as the level widths and the
thermal energy 7. Under such conditions the thermal and the
electromagnetic properties of the fine metallic particles may deviate
considerably from those of the bulk metal. This circumstance has
already been noted by Fréhlich [1] and proposed by him as a test
of quantum mechanics. Because it is difficult to control the shapes
of such small particles while they are being experimentally produced,
the electronic energy levels are seen to be random and the theory for
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the eigenvalues of random matrices may be useful in their study.

Random matrices are also encountered in other branches of physics.
For example, glass may be considered as a collection of random nets,
that is, a collection of particles with random masses exerting random
mutual forces, and it is of interest to determine the distribution of
frequencies of such nets [Dyson, 6]. A one-dimensional model of
glass is considered in Chapter 14.

1.2. A Summary of Statistical Facts about
Nuclear Energy Levels

1.2.1. LEVEL DENSITY

As the excitation energy increases, the nuclear energy levels occur
on the average at smaller and smaller intervals. In other words,
level density increases with the excitation energy. The first question
we might ask is how fast does this level density increase for a particular
nucleus and what is the distribution of these levels with respect to
spin and parity ? This is an old problem treated by Bethe [1]. Even
a simple model in which the nucleus is taken as a degenerate Fermi
gas with equidistant single-particle levels gives an adequate
result. It amounts to determining the number of partitions A(n) of a
positive integer n into smaller positive integers v, , v, ,...

n=v, +v, + -, v, >0,v2>0,.._..

For large n this number, according to the Hardy-Ramanujan [1]
formula, is given by
A(m) ~ exp[(36m°n)} /%],

where 8 is equal to | or 2 according to whether the v; are all different
or whether some of them are allowed to be equal. With a slight
modification due to later work [Lang and Lecouteur, 1; Cameron, 1],
Bethe’s result gives the level density as

(E,j, ) o€ (2 + I(E — Ay % exp [~ 5i5(j + 1)) expl2a(E — 4y,

where E is the excitation energy, j is the spin, and = is the parity.
The dependence of the parameters o, a, and 4 on the neutron and
proton numbers is complicated and only imperfectly understood.
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However, for any particular nucleus a few measurements will suffice
to determine them all; the formula will then remain valid for a wide
range of energy that contains thousands and even millions of levels.

1.2.2. DiSTRIBUTION OF NEUTRON WIDTHS

An excited level may decay in many ways; for example, by neutron
ejection or by giving out a quantum of radiation. These processes
are characterized by the corresponding decay widths of the levels.
The neutron reduced widths I° = I',/E'/? in which I, is the
neutron width and E is the excitation energy of the level, show
large fluctuations from level to level. From an analysis of the
then available data Scott [1] and later Thomas and Porter [1] con-
cluded that they had a y2-distribution with » = 1 degree of freedom:

P(x) = [T($v)]7! e~ /2 (Jpx) 1/ - 4y — (Dgrx)~1/2 g=(1/2)3,

where P(x) dx is the probability that a certain reduced width will lie
in an interval dx around the value x. This indicates a Gaussian
distribution for the reduced width amplitude

(%)1/2 exp[—3(Vx)}] d(Vx)

expected from the theory. In fact, the reduced width amplitude is
proportional to the integral of the product of the compound nucleus
wave function and the wave function in the neutron-decay channel
over the channel surface. If the contributions from the various parts
of the channel surface are supposed to be random and mutually
independent, their sum will have a Gaussian distribution with zero
mean.

1.2.3. RapiaTion AND Fission WipTus!

The total radiation width is almost a constant for particular spin
states of a particular nucleus. The total radiation width is the sum
of partial radiation widths

™~
[
Mz
~

.
|I
-

t Bohr [1].
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If we assume that each of these I';/T; has a y*-distribution with one
degree of freedom like the neutron widths and all the I; are the
same, then I'/T" will have a y2-distribution with m degrees of freedom.

Even if the I; are different, we have
r=yTri
and

(T —Tpr =23 Iy,

so that for m large I'/T" has a narrow distribution. It is difficult to
measure the partial radiation widths.

Little is known about the fission-width distributions. Some
known fission widths of U235 have been analyzed [Bohr, 1] and a
x2-distribution with 2 to 3 degrees of freedom has been found to
give a satisfactory fit.

From now on we shall no longer consider neutron, radiation, or
fission widths.

1.2.4. LLEVEL SPACINGS

Let us regard level density as a function of the excitation energy
as known and consider an interval of energy SE centered at E. This
interval is much smaller compared with E, whereas it is large enough
to contain many levels; that is,

E>SE> D,

where D is the mean distance between neighboring levels. How are
the levels distributed in this interval? Although the level density
varies strongly from nucleus to nucleus, the fluctuations in the
precise positions of the levels seem not to depend on the nucleus
and not even on the excitation energy. As the density of the levels
is nearly constant in this interval, we might think that they occur
at random positions without regard to one another, the only condition
being that their density be a given constant. However, such is not
the case. It is true that nuclear levels with different spin and parity
or atomic levels with different sets of good quantum numbers seem
to have no influence on each other. However, levels with the same set
of good quantum numbers show a large degree of regularity. For
instance, they rarely occur close together.
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A more detailed analysis of the experimental data regarding the
above quantities as well as the strength functions may be found in
Garg et al. [1] and Rosen et al. [1].

1.3. Definition of a Suitable Function for the Study of
Level Correlations

To distinguish between various possibilities we define the distribu-
tion of spacings. Let E) , E, ,..., E, be the positions of the successive
levels in the interval 8E(E, << E, < --*) and let Sy, S, ,... be their
distances apart S; = E,,, — E;. The average value of S; is the
mean spacing D. We define the relative spacings t;, = S;/D. The
probability density function p(t) is defined by the condition that
p(t) dt is the probability that any ¢; will have a value between ¢
and t -+ dt.

For the simple case in which the positions of the energy levels
are not correlated the probability that any E; will fall between E and
E + dE is independent of E and is simply p dE, where p = D1 is
the average number of levels in-a unit interval of energy. Let us
determine the probability of a spacing S; that is, given a level at E,
what is the probability of having no level in the interval (E, E 4 .5)
and one level in dS at E + S. For this we divide the interval S into m
equal parts. Because the levels are independent, the probability of
having no level in (E, E 4 S) is the product of the

S

E+or a5
] 1 L [y
£ F+2S E+S

probabilities of having no level in any of these m parts. If m is large,
so that S/m is small, we can write this as

Moreover, the probability of having a level in dS at E + S is p dS.
Therefore, given a level at E, the probability that there is no level
in (E, E + S) and one level in dS at E -+ S is

e*Sp dS
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1.0
Thorium
Emox = 39 Kev
223 levels
\\ D=176 eV
05}
N
0 T 2 3
(a)
10 t
y23e
Emax = 39 KeV
227 levels
— D=172 eV
05
0 | 2 3

(b)

Fic. 1.1. Summary of the experimental data on nuclear level spacings for the
elements Th and U?23. (a) Histogram of the observed density of level spacings as a
function of ¢t = S/D; the spacing is measured in units of the mean level spacing
for thorium. (b) The same histogram for the nucleus U%®, The two solid curves
correspond to the random and orthogonal cases. For details, see (1.1), (5.84), and
(5.105). From Garg et al. [1].
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or in terms of the variable t = S/D = pS
p(t)dt = e tds. (1.Y)

This is known as the Poisson distribution or the spacing rule for
random levels.

That (1.1) i1s not correct for nuclear levels of the same spin and
parity or for atomic levels of the same parity and orbital and spin
angular momenta is clearly seen by a comparison with the empirical
evidence (Figures 1.1 and 1.2).

1.0
HfI
Tal
| Wi
Rel
Osl
Irl
05¢
0 [ 2 3

Fic. 1.2. Plot of the density of spacings between odd parity atomic levels of a
group of elements in the region of osmium. The levels in each element were separated
according to the angular momentum, and separate histograms were constructed for each
level series, and then combined. The elements and the number of contributed spacings
are HfI, 74; Tal, 180; WI, 262; Rel, 165; Osl, 145; Irl, 131, which lead to a total
of 957 spacings. The solid curves correspond to the random and orthogonal cases;
(1.1), (5.84), and (5.105). From Porter and Rosenzweig [1].

1.4. Wigner Surmise

When the experimental situation was not yet conclusive, Wigner [3]
proposed the following rules for spacing distributions:

1. In the sequence of levels with the same spin and parity, called
a simple sequence, the probability density function for a spacing is
given by

m m S
pw(t):jtexp (—th), t=-5- (1.2)
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2. The levels with different spin and parity are not correlated.
The function p(t) for a mixed sequence may be obtained by randomly
superimposing the constituent simple sequences (cf. Appendix A.22).

Two simple arguments give rise to Rule 1. As pointed out by
Wigner [3] and by Landau and Smorodinsky [1], it is reasonable to
expect that, given a level at E, the probability that another level
will lie around E + S is proportional to S for very small S. Now,
if we extrapolate this to all S’s and, in addition, assume that the
probabilities in various intervals of length S/m obtained by dividing .S
into m equal parts are mutually independent, we arrive at

.om tr 1
p(t) dt = lim 1}) (1=~ a)atat
— at /298 gy, (1.3)

The constant a can be determined by the condition that the average
value of ¢ = S/D is unity:

fwtp(t)dt ~1 (1.4)

Let us, at this point, define the s-point correlation function
R.(E,,..., E,) so that R, dE, dE, --- dE,, is the probability of finding

1.0

075+ -"\\‘ ..... pw(”
050+

025 L

0 ] 7 3

Fi1c. 1.3. 'The probability density functions p(¢) and py(2);(1.2),(5.84),and (5.105)
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a level in each of the intervals (E,, E, 4 dE)),..., (E, , E, + dE,),
all other levels being unobserved. The two simple arguments of
Wigner given in the derivation of Rule 1 are equivalent to the
following. The two-point correlation function Ry(E, , E,) is linear in
the variable | E; — E,|, and three and higher order correlation
functions are negligibly small.

We shall see in Chapter 5 that both arguments are inaccurate,
whereas Rule 1 is very near the correct result (Figure 1.3). It is
surprising that the two errors made so nearly compensate each other.

1.5. Electromagnetic Properties of Small Metallic Particles

Consider small metallic particles at low temperatures, The number
of electrons in a volume V is n ~ 4wp®V/3h3, where p, is the Fermi
momentum and % is Planck’s constant. The energy of an excitation
near the Fermi surface is E, ~ p,2/2m*, where m* is the effective
mass of the electron. The level density at zero excitation is therefore
o = dn/dE, ~ 4np,Vm*[h3, and the average level spacing is the
inverse of this quantity 4 ~ ¢~'. For a given temperature we can
easily estimate the size of the metallic particles for which 4 > kT,
where & is Boltzmann’s constant and 7 is the temperature in degrees
Kelvin. For example, a metallic particle of size 107¢- 107 cm
contains 10% - 10% electrons and, at T ~ 10°K, 4 ~ | eV, whereas
kT ~ 1073 eV. It is possible to produce particles of this size experi-
mentally and then to sort them out according to their size (e.g., by
centrifuging and sampling at a certain radial distance). Thus we
have a large number of metallic particles, each of which has a different
shape and therefore a different set of electronic energy levels but
the same average level spacing, for the volumes are equal. It would
be desirable if we could separate (e.g., by applying a nonuniform
magnetic field) particles containing an odd number of conduction
electrons from those containing an even number. The energy-level
schemes for these two types of particle have very different properties
(see Chapters 2 and 3).

Given the position of the electronic energies, we can calculate the
partition function in the presence of a magnetic field and then use
thermodynamic relations to derive various properties such as electronic
specific heat and spin paramagnetism. Fréhlich [1] assumed that the
energies were equally spaced and naturally obtained the result that
all physical quantities decrease exponentially at low temperatures
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as e~4/kT for 1 < A/kT. Kubo [1] repeated the calculation with
the assumption that the energies were random without correlations
and that their spacings therefore follow a Poisson law. He arrived
at a linear law for the specific heat ~kT/4. The constants are different
for particles containing an odd number of electrons from those
containing an even number. For spin paramagnetism even the
dependence on temperature is different for the two sets of particles.
Instead of Frohlich’s equal spacing rule or Kubo’s Poisson law, it
would perhaps be better to adopt the point of view of Gorkov and
Eliashberg [1], which may be justified as follows. The energies are
the eigenvalues of a fixed Hamiltonian with random boundary
conditions. We may incorporate these boundary conditions into the
Hamiltonian by the use of fictitious potentials.

In contrast to nuclear spectra, we have the possibility of realizing
in practice all three ensembles considered in various sections of this
book. They apply in particular when (a) the number of electrons (in
each of the metallic particles) is even and there is no external magnetic
field, (b) the number of electrons (in each of the metallic particles)
is odd and there is no external magnetic field, (c) there is an external
magnetic field H > 4/u, where p is the magnetic moment of the
electron.



2 / Gaussian Ensembles. The Joint Probability
Density Function for the Matrix Elements

2.1. Preliminaries

In the mathematical model our systems are characterized by their
Hamiltonians, which in turn are represented by Hermitian matrices.
Let us look into the structure of these matrices. The low-lying
energy levels (eigenvalues) are far apart and each may be described
by a different set of quantum numbers. As we go to higher excitations,
the levels draw closer, and because of their mutual interference most
of the approximate quantum numbers lose their usefulness, for they
are no longer exact. At still higher excitations the interference is so
great that some quantum numbers may become entirely meaningless.
However, there may be certain exact integrals of motion, such as
total spin or parity, and the quantum numbers corresponding to them

Jio T

o, Mo

U3, Ty
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are conserved whatever the excitation may be. If the basic functions
are chosen to be the eigenfunctions of these conserved quantities,
all Hamiltonian matrices of the ensemble will reduce to the form
of diagonal blocks. One block will correspond uniquely to each set
of exact quantum numbers. The matrix elements lying outside these
blocks will all be zero, and levels belonging to two different blocks
will be statistically uncorrelated. As to the levels corresponding to the
same block, the interactions are so complex that any regularity
resulting from partial diagonalization will be washed out.

We shall assume that such a basis has already been chosen and
restrict our attention to one of the diagonal blocks, an (N X N)
Hermitian matrix in which N is a large but fixed positive integer.
Because nuclear spectra contain at least hundreds of levels with the
same spin and parity, we are interested in the limit of very large N.

With these preliminaries, the matrix elements may be supposed to
be random variables and allowed the maximum statistical inde-
pendence permitted under symmetry requirements. To specify
precisely the correlations among various matrix elements we need
a careful analysis of the consequences of time-reversal invariance.

2.2. Time-Reversal Invariance!

We begin by recapitulating the basic notions of time-reversal
invariance. From physical considerations, the time-reversal operator
is required to be antiunitary [Wigner, 1] and can be expressed, as
any other antiunitary operator, in the form

T = KC, 2.1)

where K is a fixed unitary operator and the operator C takes the
complex conjugate of the expression following it. Thus a state under

time reversal transforms to
YR = Ty = Ky*, (22)

¢ * being the complex conjugate of . From the condition
(¢, A) = (P, AR¢F)

for all pairs of states i, ¢, and (2.2), we deduce that under time
reversal an operator A4 transforms to

AR = KATK, (2.3)

t Sections 2.2 to 2.5 are based largely on an article by Dyson [1].
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where AT is the transpose of 4. A is said to be self-dual if 4% = 4.
A physical system is invariant under time reversal if its Hamiltonian
is self-dual, that is, if

HR = H. (2.4)

When the representation of the states is transformed by a unitary
transformation, ¢y — Uy, T transforms according to

T—UTU? =UTU* (2.5)

or K transforms according to

K - UKUT. (2.6)

Because operating twice with T should leave the physical system
unchanged, we have

TP=o-1, |a|=1, 2.7)

where / is the unit operator; or
T* = KCKC = KK*CC = KK* = o 1, (2.8)
But K is unitary:
K*KT =1.
From these two equations we get
K = oKT = o(aKT)T = 2K,

Therefore

=1 or a= 4], (2.9)

so that the unitary matrix K is either symmetric or antisymmetric.
In other words, either

KK* = | (2.10)

or
KK* = —1. 2.11)

These alternatives correspond, respectively, to an integral or a
half-odd integral total angular momentum of the system measured
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in units of # [Wigner, 1], for the total angular momentum operator
J = (J:, Js, Js) must transform as

Jf=—L, I=123 (2.12)

For brevity we call the two possibilities the even-spin and odd-spin
case, respectively.

2.3. Gaussian Orthogonal Ensemble

Suppose now that the even-spin case holds and (2.10) is valid.
Then a unitary operator U will exist such that (cf. Appendix A.23)

K = UUT. (2.13)

By (2.6) a transformation ¢ — U~y performed on the states i
brings K to unity. Thus in the even-spin case the representation of
states can always be chosen so that

K=1. (2.14)

After one such representation is found, further transformations
¢ — Ry are allowed only with R a real orthogonal matrix so that
(2.14) remains valid. The consequence of (2.14) is that self-dual
matrices are symmetric. In the even spin case every system invariant
under time reversal will be associated with a real symmetric matrix H
if the representation of states is suitably chosen. For even-spin systems
with time-reversal invariance the Gaussian orthogonal ensemble E; ,
defined below, is therefore appropriate.

Definition 2.1: The Gaussian orthogonal ensemble E; is defined
in the space T, of real symmetric matrices by two requirements:

1. The ensemble is invariant under every transformation
H—> WTHW , (2.15)

of T, into itself, where W is any real orthogonal matrix.

2. The various elements H,;, k < j, are statistically independent.

These requirements, expressed in the form of equations, read as
follows:
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1. The probability P(H) dH that a system of E,; will belong to
the volume element dH = T[], ; dH}; is invariant under real orthogo-
nal transformations:

P(H'YdH' = P(H)dH, (2.16)
where
H = WTHW (2.17)
and
WTW = WWT = 1. (2.18)

2. This probability density function P(H) is a product of functions,
each of which depends on at most a single variable:

(2.19)

K%

Suppose, next, that we are dealing with a system invariant under
space rotations. The spin may now be even or odd. The Hamiltonian
matrix F{ which represents the system commutes with every com-
ponent of J. If we use the standard representation of the | matrices
with J; and J; real and ], pure imaginary, (2.12) may be satisfied
by the usual choice [Wigner, 1]

K = etrs (2.20)

for K. With this choice of K, H and K commute and HR reduces
to H7. Thus a rotation-invariant system is represented by a real
symmetric matrix f, and once again the ensemble E,; is appropriate.

2.4. Gaussian Symplectic Ensemble!

In this section we discuss a system to which E,; does not apply,
a system with odd-spin, invariant under time reversal, but having no
rotational symmetry. In this case (2.11) holds, K cannot be diago-
nalized by any transformation of the form (2.6), and there is no
integral of the motion by which the double-valuedness of the
time-reversal operation can be trivially eliminated.

t Dyson [1].
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Every antisymmetric unitary operator can be reduced by a trans-
formation (2.6) to the standard canonical form (cf. Appendix A.23)

Il

Lk B B

.21)

which consists of (2 X 2) blocks

I

|
along the leading diagonal; all other elements of Z are zero. We
assume that the representation of states is chosen so that K is reduced
to this form. The number of rows and columns of all matrices must
now be even, for otherwise K would be singular in contradiction to
(2.11). It is convenient to denote the order of the matrices by 2N
instead of N. After one such representation is chosen, for which

K = Z, further transformations ¢ — By are allowed, only with B
a unitary (2N X 2N) matrix for which

Z = BZBT. (2.22)

Such matrices B form precisely the /N-dimensional symplectic group
[Weyl, 1], usually denoted by Sp(N).

It is well known [Chevalley, 1; Dieudonné, 1] that the algebra of
the symplectic group can be expressed most conveniently in terms of
quaternions. We therefore introduce the standard quaternion notation
for (2 X 2) matrices,

i 0 0 —1 0 —i
a=lo o} el o «-[5 ol e

—1
with the usual multiplication table

62 = e = g2 = —1, (2.29)

€6, = —e,6; = €5, €26y = —e40, = €, ese, = —eeg =e,. (2.25)
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Note that in (2.23), as well as throughout the rest of this book, 7 is
the ordinary imaginary unit and not a quaternion unit. The matrices
e,, &, and e, , together with the (2 X 2) unit matrix

t=o 1)

form a complete set, and any (2 X 2) matrix with complex elements
can be expressed linearly in terms of them with

[2‘ Z _2( +d)1 — (a—d)e, ——%(b—c)eg —|—%(b 1) e;.  (2.26)
All the (2N X 2N) matrices will be considered as cut into N2 blocks
of (2 x 2) and each (2 x 2) block expressed in terms of quaternions.
In general, a (2N x 2N) matrix with complex elements thus becomes
an (N x N) matrix with complex quaternion elements. In particular,
the matrix Z is now

Z = ey, (2.27)

where I is the (N x N) unit matrix. It is easy to verify that the rules
of matrix multiplication are not changed by this partitioning.

Let us add some definitions. We call a quaternion “‘real” if it is
of the form

g=4¢'"+q-e, (2.28)

with q'Y, ¢V, ¢, and ¢*. Thus a real quaternion
does not correspond to a (2 X 2) matrix with real elements. Any
complex quaternion has a °

=497 —q-e, (2.29)

which is distinct from its )
g* = qO* 4 q*-e. (2.30)
A quaternion with ¢* = ¢ is real; one with ¢* = —¢ is pure

imaginary; and one with § = ¢ is a scalar. By applying both types
of conjugation together, we obtain the °

gt =q* =¢9* —q*-e. (2.31)

A quaternion with ¢+ = ¢ is Hermitian and corresponds to the
ordinary notion of a (2 X 2) Hermitian matrix; one with ¢* = —¢q
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is anti-Hermitian. The conjugate (Hermitian conjugate) of a product of
quaternions is the product of their conjugates (Hermitian conjugates)
taken in the reverse order:

(9192 " 9n) = Gn " G » (2.32)
(092 " @)™ = @ - g™ (2.33)

Now consider a general (2N X 2N) matrix A4 which is to ‘be
written as an (N X N) matrix Q0 with quaternion elements g¢,; ;
k,j = 1,2,.., N. The standard matrix operations on A4 are then
reflected in Q in the following way:

Transposition,
| (s = —ealues - (2:34)
Hermitian conjugation,
(O i = G - (2.35)
Time reversal,
(O%)s = Qs & = G- (2.36)

The matrix QX is called the ‘““dual” of Q. A “self-dual” matrix is one
with Q% = Q. v

The usefulness of quaternion algebra is a consequence of the
simplicity of (2.35) and (2.36). In particular, it is noteworthy that
the time-reversal operator K does not appear explicitly in (2.36) as
it did in (2.3). By (2.35) and (2.36) the condition

OF =0 (2.37)

is necessary and sufficient for the elements of Q to be real quaternions.
When (2.37) holds, we call Q “quaternion real.”

A unitary matrix B that satisfies (2.22) is automatically quaternion
real. In fact, it satisfies the conditions

BR — Bt — B\, (2.38)

which define the symplectic group. The matrices H which represent
the energy operators of physical systems are Hermitian as well as
self-dual:

H® =H, H*-—H, (2.39)
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hence are also quaternion real.

Q;rk = Qi = qx;j . (2.40)

or ¢
Thus the number of real
independent parameters that define a (2N x 2N) self-dual Hermitian

matrix is
IN(N + 1) + IN(N — 1) -3 = NQN — 1).

From this notational excursion, let us come back to the point.
Systems having odd-spin, invariance under time-reversal, but no
rotational symmetry, must be represented by self-dual, Hermitian
Hamiltonians. Therefore the Gaussian symplectic ensemble, as
defined below, should be appropriate for their description.

Definition 2.2: 'The Gaussian symplectic ensemble E,. is defined in
the space T,; of self-dual Hermitian matrices by the following
properties:

1. The ensemble is invariant under every orthomorphism
H—> WRHW (2.41)

of T, into itself, where W is any symplectic matrix.

2. Various linearly independent components of H are also
statistically independent.

These requirements put in the form of equations read as follows:

1. The probability P(H) dH that a system E,; will belong to the

volume element
3

aH = ] aH© ] ] ¢HW (2.42)

k< A=l k<
is invariant under symplectic transformations; that is,
P(H'YdH' = P(H)dH (2.43)

if
H' = WRHW, (2.44)
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where
WZIWT — Z (2.45)

2. The probability density function P(H) is a product of functions
each of which depends on a single variable:

P(H) = T /9 [T 11/ w () (2.46)

k< A=1 k<j

2.5, Gaussian Unitary Ensemble

For completeness we discuss briefly a much simpler ensemble, the
Gaussian unitary ensemble E,; which applies to systems without
invariance under time reversal. Such systems are easily created in
principle by putting an ordinary atom or nucleus, for example, into an
externally generated magnetic field. The external field is not affected
by the time-reversal operation. However, for the unitary ensemble to
be applicable, the splitting of levels by the magnetic field must be at
least as large as the average level spacing in the absence of the
magnetic field. The magnetic field must, in fact, be so strong that
it will completely ‘““mix up” the level structure that would exist in zero
field; for otherwise our random hypothesis cannot be justified. This
state of affairs could never occur in nuclear physics. In atomic or
molecular physics a practical application of the unitary ensemble may
perhaps be possible.

A system without time-reversal invariance has a Hamiltonian that
may be an arbitrary Hermitian matrix not restricted to be real or
self-dual. Thus we are led to the following definition.

Definition 2.3: 'The Gaussian unitary ensemble E,; is defined in
the space of Hermitian matrices by the following properties:

1. The probability P(H)dH that a system of E,; will belong to the
volume element

dH = [] dH® [] dHY, (2.47)

<y k<j

where H{Y} and Hf}' are real and imaginary parts of H,;, is invariant
under every automorphism

H— UHU (2.48)

of T, into itself, where U is any unitary matrix.
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2. Various linearly independent components of H are also
statistically independent.

In mathematical language these requirements are
1. P(H')dH' = P(H)dH, (2.49)
H' = U-'HU, (2.50)

where U is any unitary matrix.
2. P(H) is a product of functions, each of which depends on a
single variable: ‘

PH) = T[] f3HD) 1] F3HP). (2.51)

k< k<j

2.6. Joint Probability Density Function for Matrix Elements

We now come to the question of the extent to which we are still
free to specify the joint probability density function P(H). It will be
seen that the two postulates of invariance and statistical independence
elaborated above fix uniquely the functional form of P(H).

The postulate of invariance restricts P(H) to depend only on a
finite number of traces of the powers of H. We state this fact as a
lemma [Weyl, 1].

Lemma 2.1. All the invariants of an (N X N) matrix H under
nonsingular similarity transformations A,

H—>H' = AHA,
can be expressed in terms of the traces of the first N powers of H.

Proof: Because all invariants are symmetric functions of the eigen-
values A, kR = 1, 2,..., N, of H, and

N
trHi =Y N =t;, say,

k=1

we need to show that any symmetric function of A, can be expressed in

terms of the first N of the ¢; . Let the secular equation which determines
the A, be

det[H — A] = (—AN + oy(—APN-1 £ - + gy =0,
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so that, given the coefficients
s, I<j<N,

o5 = Z /\kl)\k2 ’\ki
1<k <. .. <k;<N

all the eigenvalues A are uniquely determined except for their order.
Thus any symmetric function of the A; can be expressed in terms of
the basic functions o, , 0, ..., oy . To show that the ¢; form another such
basis it will then be sufficient to express o; in terms of ¢;. This is

achieved by the equation (Appendix A.l)

o, = (rl)y 1 det[ay]i.jo1,2.....r 5 1 <r <N, (2.52)
where
s i R <),
ay = 1, i h—j 41, (2.53)
0, if R>j 4 1.

Incidently, we note that
detlay]e s 2,..., =0, if 7>N, (2.54)

which expresses the traces of all the powers of H in terms of those
of the first IV powers.

The postulate of statistical independence excludes everything
except the traces of the first two powers, and these, too, may occur
only in an exponential. To see this we will need the following lemma.

Lemma 2.2. If three continuous and differentiable functions f(x);
k = 1, 2, 3, satisfy the equation

fi(x2y) = folx) +1:09), (2.55)
they are necessarily of the form aln x + b, with by, = b, + by .
Proof: Differentiating (2.55) with respect to x, we have

oy — L pria
Fw) =5 1)

which, on integration with respect to y, gives

L) =@y + L), (2.56)
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where g(x) is still arbitrary. Substituting f,(xy) from (2.56) into (2.55),
we get

2fy (%) Iny + g(x) — fox) = f3(9)- (2.57)

Therefore the left-hand side of (2.57) must be independent of x;
this is possible only if

xff(x)=a and  g(x) — fo(x) = by,

that is, only if
folx) = alnx + by = g(x) — by,

where a, b, , and by are arbitrary constants.
Now (2.57) gives
fsy) =alny + b

and finally (2.55) gives
Si(xy) = aln(xy) + (b, -+ by). Q.E.D.

Let us now examine the consequences of the statistical independence
of the various components of H. Consider the particular transforma-
tion .

H = U-H'U, (2.58)
where
cosfd sin@ 0--07]
—sin® cosf 0---0
u=| o 0 10 (2.59)

or, in quaternion notation (provided N is even),

cos —eysind Q-0

U= 0 L0 (2.60)

This U 1s, at the same time, orthogonal, symplectic, and unitary.
Differentiation of (2.58) with respect to 6 gives

oH 8UT 1
20~ op LU UH 55
T
0 vy 4 mur &Y (2.61)

o 96 °
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and by substituting for U, U7, 0U/08, and oUT/df from (2.59) or
(2.60) we get
oH

25 = AH + HAT, (2.62)
where
0 —1 0.0
A=aaléTU= 0 88::8 (2.63)
0 0 00

e, 000
a— %09 (2.64)
0 00

If the probability density function
P(H) =[] f(HS (2.65)

is invariant under the transformation U, its derivative with respect
to 8 must vanish; that is

5L o eHY
fi emy e

—0. (2.66)

Let us write this equation explicitly, say, for the unitary case.

Equations (2.62) and (2.66) give

1 8f (0)

1 af(o) 1 af(o)
3[ T f(l)) aH(O) [H(O) H;g)

TFOeAY T FY Y o] RH) +

(0) S

N 1 3f (0) 1 3f (0)
+ 2 [ fm) 31.1(0) O 2H Hm)]

=3

N 1 af(l) 1 8f(1)
;, [ (1) 3H‘1’ (1) +f71‘)‘é‘Hz(—’;)H‘l)] =0. (2.67)
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The braces at the left-hand side of this equation depend on
mutually exclusive sets of variables and their sum is zero. Therefore
each must be a constant; for example,

(i (0) (0 (0)
HY of Y | HY of
f oHR  fQ oHY

—Co. (2.68)

On dividing both sides of (2.68) by H{Y H{ and applying the

Lemma 2.2, we conclude that the constant C{» must be zero, that is,

11 Y 1 1 oY

H;g)@ ¢H©® = H;;g’@ 2HD = constant
. = —2a, say, (2.69)
which on integration gives
QIHQ] = exp{—a[HP]}. (2.70)

In the other two cases we also derive a similar equation. Now
because the off-diagonal elements come only as squares in the
exponential and all invariants are ‘expressible in terms of the traces
of powers of H, the function P(H) is an exponential that contains
traces of at most the second power of H.

Because P(H) is required to be invariant under more general
transformations than we have here considered, one might think that
the form of P(H) is further restricted. This, however, is not so, for

P(H) = exp(— atr H2 +btr H + C)

= €€ [] exp{—a[H©? +bH®} [] exp{—a[H]Z} (2.71)
k<j k<j,A
is already a product of functions, each of which depends on a separate
variable. Moreover, and
real, @ must be real and positive and b and ¢ must be real.
Therefore we have proved the following theorem [Porter and

Rosenzweig, 1; Wishart, 1].

Theorem 2.1. In all the above three cases the form of P(H) is
automatically restricted to

PH)Y=-exp(—atr H2 4+ btr H + ¢), (2.72)

where a is real and positive and b and ¢ are real.
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In the foregoing discussion we have emphasized the postulate of
statistical independence of various components of H even at the risk
of frequent repetitions. This statistical independence is important in
restricting P(H) to the simple form (2.72), and hence makes the
subsequent analytical work tractable. However, it lacks a clear physical
motivation and therefore looks somewhat artificial.

The main objection to the assumption of statistical independence,
leading to (2.72), is that all values of H{} are not equally weighted
and therefore do not correspond to all “interactions” being “‘equally
probable.” By a formal change Dyson [1-6] has defined his “circular
ensembles,” which are esthetically more satisfactory to some people
and equally easy to work with. We shall come to them in Chapters 8
to 11. On the other hand, Rosenzweig [1] has emphasized the “fixed
strength” ensemble. Others [Lefl, 1; Fox and Kahn, 1] have arbitrarily
tried the so-called “‘generalized” ensembles. A brief review of these
topics is given in Chapter 17.



3 / Gaussian Ensembles. The Joint Probability
Density Function for the Eigenvalues’

3.1. Orthogonal Ensemble

The joint probability density function (abbreviated j.p.d.f. later in
the chapter) for the eigenvalues 6, , 0, ,..., 0, can be obtained from(2.72)
by expressing the various components of H in terms of the N
eigenvalues 6, and other mutually independent variables, p,, say,
which together with the 6, form a complete set. In an (N x N) real
symmetric matrix the number of independent real parameters which
determine all H,; is 3N(N + 1). We may take these as H,; with
k < j. The number of extra parameters p, needed is therefore

[=3N(N +1) — N =IN(N — 1). (3.1)

Because

N N
trH2 =Y 62, wH=Y4, (3.2)
1 1

the probability that the Nroots and the L N(N — 1) parameters will occur
in unit intervals around 6, ,..., 8y and p,, P, ,..., p; 1s, according to

(2.72),
N N
Ay sy By 5 Pr ey 1) = exp (—a L 67 + 6 Y6, + ) J6,p), (3.3)

1 1
where [ is the Jacobian

](0, p) — i 6([111 ] H12 yeory HNN)

8By 5eee O, Proeen 1)

(3.4)

Hence the j.p.d.f. of the eigenvalues 6; can be obtained by integrating
(3.3) over the parameters p, ,..., p,. [t is usually possible to choose

t This chapter is based largely on Wigner’s article [6].
30
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these parameters so that the Jacobian (3.4) becomes a product of a
function of 6; and a function of p, . If this is the case, the integration
provides the required j.p.d.f. as a product of the exponential in (3.3),
the aforementioned function of the 8, and a constant. The constant can
then be absorbed in ¢ in the exponential.

To define the parameters p, [Wigner, 6] we recollect that any real
symmetric matrix H can be diagonalized by a real orthogonal matrix

[Wigner, 2]:

H = UoU~ (3.5)
= UeuT, (3.5)
where @ is the diagonal matrix with diagonal elements 8, , 8, ,..., 8y

arranged in some order, say, 0, << 8, << - < 8y, and U is a real
orthogonal matrix
UUT = UTU =1, (3.6)

whose columns are the normalized eigenvectors of H. They are, or
may be chosen to be, mutually orthogonal. To define U completely
we must in some way fix the phases of the eigenvectors—for instance
by requiring that the first nonvanishing component be positive. Thus
U depends on §N(N — 1) real parameters and may be chosen to be
the U;;, k > j. If H has multiple eigenvalues, further conditions
are needed to fix U completely. It is not necessary to specify them,
for they apply only in regions of lower dimensionality which are
irrelevant to the probability density function. At any rate, the
IN(N — 1) parameters p, are supposed to characterize the U which
is subject to the preceding conditions. Once this is done, the matrix H,
which completely determines the ® and the U subject to the preceding
conditions, also determines the 6; and the p, uniquely. Conversely,
the 6; and p, completely determine the U and @, and hence by (3.5)
all the matrix elements of H.
Differentiating (3.6), we get

oUT .oU

T Ut U5 =0 (3.7)
and because the two terms in (3.7) are the Hermitian conjugates
of each other,

s =y U _ U

g %P P, 9

is an antisymmetric matrix.
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Also from (3.5) we have
oH oUT

— = @UT + U® . 3.9
. 3Pu . 39
On multiplying (3.9) by U7 on the left and by U on the right, we get
Ut % U = SWe — @S, (3.10)
In terms of its components, (3.10) reads
y aaH”‘ UU,p = S®(8, — 6). (3.11)
ik Pu
In a similar way, by differentiating (3.5) with respect to 8,
oH,, 0,5
:’Zk 80 U Ukﬂ aoy - Suﬁ auy . (3.12)

The matrix of the Jacobian in (3.4) can be written in the partitioned
form as
oH,; ©0Hj,
|8, e,
apu. apu

The two columns in (3.13) correspond to N and {N(N — 1) actual
columns: 1 < j < k& < N. The two rows in (3.13) correspond again to
Nand $N(N — 1)actualrows:y = 1,2,...,N;u=1,2, -, %N(N— 1).
If we multiply the []] in (3.13) on the right by the

IN(N + 1) X $N(N + 1)

matrix written in the partitioned form as

in which the two rows correspond to N and 1N(N — 1) actual rows,
1 <j <k < N, and the column corresponds to $N(N + 1) actual
columns, | < a < B < N, we get by using (3.11) and (3.12)

Uiv] = [S(“)EZ?BW )] (3.15)
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The two rows on the right-hand side correspond to N and $N(N — 1)
actual rows and the column corresponds to }N(N + 1) actual
columns. Taking the determinant on both sides of (3.15), we have

J(6, p) det V = T (65 — 6,) det [8557]
af

ax<f
or

J(6,p) = Hﬂ | 05 — 0.1 f(p), (3.16)

where f(p) is independent of the 6; and depends only on the
parameters p, .

By inserting this result in (3.3) and integrating over the variables
p. we get the j.p.d.f. for the eigenvalues of the matrices of an
orthogonal ensemble

N
P8, ,..., 6y) = exp [— Y (ab — b6, — c)] T116:.—61, (.17
1 i<k
where ¢ is some new constant. Moreover, if we shift the origin of
the 8 to b/2a and change the energy scale everywhere by a constant
factor 4/2a, we may replace 6, with (1/4/2a) x; 4 b/2a. By this
formal change (3.17) takes the simpler form

1 N
P ey 3) = Crexp (— 5 X 02) T 1 — mel, (318)
1

i<k

where Cy, is a constant.

3.2. Symplectic Ensemble

As the analysis is almost identical in all three cases, we have
presented the details for one particular ensemble—the orthogonal one.
Here and in the following discussion we indicate briefly the modifica-
tions necessary to arrive at the required j.p.d.f. in the other two cases.

Corresponding to the result that a real symmetric matrix can be
diagonalized by a real orthogonal matrix, we have the following:

Theorem 3.1. Given a quaternion-real, self-dual matrix H, there
exists a symplectic matrix U such that
H = UBU-! — UOUR, (3.19)

where O is diagonal, real, and scalar (cf. Appendix A.23).
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[g" (2] (3.20)

along the main diagonal. Thus the eigenvalues of H consist of
The Hamiltonian of any system which is invariant under

time reversal, which has odd spin, and no rotational symmetry satisfies
the conditions of Theorem 3.1. All energy levels of such a system will be
doubly degenerate. This is the Kramer’s degeneracy [Kramer, 1], and
Theorem 3.1 shows how it appears naturally in the quaternion
language.

Apart from the N eigenvalues §;, the number of real independent
parameters p, needed to characterize an N X N quaternion-real,
self-dual matrix H is

I=4-IN(N - 1) = 2N(N — 1). (3.21)
Equations 3.2 and 3.3 are replaced, respectively, by
N N
o H2=2Y 602 wH=2Y9, (3.22)
1 1
and

A8y o Oy 3 Py ey 1) = 3D [ X (2087 = 266, — 0)] (6, p), (3.23)

where J(0, p) is now given by

(0) (0) (0) (3) ) (3)
O(H Y e Hyn s Hyg'seooy Hyg'soooy Hy (N seees Hyo 1 n)

6,p) =
J6.2) (61 seer On 5 D1 veees Panin-1))

(3.29)
Equation 3.5 is replaced by (3.19); (3.6), (3.7), (3.8), (3.9), and (3.10)
are valid if Note that these equations are now

in the quaternion language, and we need to separate the four
quaternion parts of modified (3.19). For this we let

ij - ng) + Hj()lg) el 4‘— H;}? 32 %_ H](;?) 83 ) (3.25)

SW = SO 4 St e 4 SBe, | Se,, (3.26)
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and write (3.10) and the one corresponding to (3.12) in the form of
partitioned matrices:

oHY  eHY oHY  oHJY v w

%, 8, ao, 26, A©® BO

oH® oH® oH Y eH® | |-+ - - -

ap“ ap“ 6p# apu A(3) B(3)
Py e T %

 SUg, —6) - S, — )| (3.27)

1<j<k<N, 1<a<B<N, 1<y<N, 1<p<2NN-—I),

where the matrices oH}P/00,, v, and p are N x N, the matrices

oH}/06, and o))y, with A =0,1,2,3, are N x }N(N — 1),
the A™ are all JN(N — 1) X N, the 8H®Y/op, and the € are
2N(N — 1) X N, the wis N X 2N(N — 1), the 0Hf’/op, and the
S% are 2N(N — 1) x 4N(N — 1) and the matrices B" are
IN(N — 1) x 2N(N — 1). The matrices p and the o appear as we
separate the result of differentiation of (3,19} with resnect to A intn
quaternion components.

Moreover, the matrix p does not depend on 6,
for @ depends linearly on the 6,. The computation of the matrices
v, w, A, and B"W is straightforward, but we do not require them.
All we need is to note that they are formed of the various components
of U, hence do not depend on 6, .

Now we take the determinant on both sides of (3.27). The
determinant of the first matrix on the left is the Jacobian (3.24).
Because the o'? are all zero, the determinant of the right-hand side
breaks into a product of two determinants:

detfp, ] det[S(6, — 0], (3.28)

the first one being independent of the §,, whereas the second is

[

T1 (8, — 6, det[ S, (3.29)

x<p
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Thus
](0’ P) = 1—[ (05 - 0&)4f(P)’ (330)

a<fB

which corresponds to (3.16).
By inserting (3.30) into (3.23) and integrating over the parameters,
we obtain the j.p.d.f.

P(b, ,..., B) = exp (2 i +2bzo +c) T1 (6 — 6, (3.31)

i<k

As before, we may shift the origin to make & = 0 and change the
scale of energy to make a = 1. Thus the j.p.d.f. for the eigenvalues
of matrices in the symplectic ensemble in its simple form is

N
Py(#y oo #3) = Cygexp (=23 #2) [T (5 —m)t,  (332)
1 i<k

where Cy, is a constant.

3.3. Unitary Ensemble

In addition to the real eigenvalues, the number of real independent
parameters p, needed to specify an arbitrary Hermitian matrix H
completely is N(N — 1). Equations 3.2 and 3.3 remain unchanged,
but (3.4) is replaced by

gy A O B s
’ 6(01 yoony oN )Pl yeaey pN(N—l))

. (3.33)

where H{f and H}}) are the real and imaginary parts of H,, . Equations
3.5 to 3.10 are valid if U7 is replaced by U*. Instead of (3.11) and
(3.12), we now have

Z ’k LU0, = S50, — ), (3.34)
> G A % U1, = _%s _5 5 . (3.35)
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By separating the real and imaginary parts we may write these
equations in as

oHY oHR oHY
26 80, 2, [v w

i 4o o
AV BW

oH® oH® oHY
ap " 3p " ap Iz

Py o o;"’iﬁ oy('llﬁ
T |ew s, —06) SU6, — 03}’
(3.36)
I1<j<k<N, L<a<<B KN,
1<p<NN-—-1), 1<y<N,
where rts of S%. The

matrices 0H{}’/06,, v, andpare N X N; the 0H};’/90,and the cr,‘,”ia are
N x IN(N — 1); the A are IN(N — 1) X N; the oH/op, and SH
are N(N — 1) x IN(N — 1);the B» are JN(N—1) X N(N—1); the
OHY/op, and the €% are N(N — 1) x N; and the matrix w» is
N X N(N —1). To compute o, w, AN, p, e o, etc., is again
straightforward, but we do not need them explicitly. What we want
to emphasize is that they are either constructed from the components
of U or arise from the differentiation of @ with respect to 6; and
consequently are all independent of the eigenvalues 6. Similarly,
S is indenendent of #.. One more bit of information we need 1is
that which can easily be verified.

Thus by taking the determinants on both sides of (3.36) and
removing the factors (6; — 6,) we have

J6.p) = 11 (8 — 6.3 f(p), (3.37)

a<B

where f(p) is some function of the p, .

By inserting (3.37) into (3.3) and integrating over the parameters
p,. we get the j.p.d.f. for the eigenvalues of matrices in the unitary
ensemble

P8, ,..., By) = exp (—a Y02 +bY 6 + c) IT (6; — 6.2, (3.38)

1 1 j<k
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and, as before, by a proper choice of the origin and the scale of

energy we have
N

Py yoney %) = Cya €xp ( -y xf) TT (x5 — ). (3.39)

1 i<k
We record (3.18), (3.32), and (3.39) as a theorem.

Theorem 3.2. The joint probability density function for the eigen-
values of matrices from a Gaussian ensemble is given by

N
Prg(%y yeue, xy) = Cypexp (——%BZ sz) IT 1% — = 18, (3.40)
1

i<k

where 8 = 1 if the ensemble is orthogonal, 8 = 4 if 1t is symplectic,
and 8 = 2 if it is unitary.

fof Prg(xy o, xy) diy -+ dxy = 1. (3.41)

In the following chapters [see (5.36), (6.3), and (6.49)] we calculate
Cyp for the physically interesting cases 8 = 1, 2, and 4. For these
values of 8, Cy, is given by

N
C;J; = (27,-)(1/2)Nﬂ—(1/2)N—(1/4)ﬁN(N—1)[I‘(1 + %B)]——N H I"(l + %B]) (342)

j=1

It is possible to understand the different powers of 8 that appear in
(3.40) by a simple mathematical argument based on counting
dimensions. The dimension of the space T; is $N(N -+ 1), whereas
the dimension of the subspace Ty, , composed of the matrices in T
with two equal eigenvalues, is 1N(N + 1) — 2. Because of the single
restriction, the equality of two eigenvalues, the dimension should
normally have decreased by one; as it is decreased by two it indicates
a factor in (3.40) linear in (x; — x;). Similarly, when B = 2, the
dimension of T, is N2, whereas that of Ty is N2 — 3. When 8 = 4,
the dimension of T,; 18 N(2N — 1), whereas that of T,; is
N(Q2N — 1) — 5 (see Appendix A.2).



4 / Gaussian Ensembles

4.1. The Partition Functiont

Consider a gas of N point charges with positions %, , %, ,..., xy free
to move on the infinite straight line —o0 < & << 0. Suppose that
the potential energy of the gas is given by

i<

The first term in W represents a harmonic potential which attracts
each charge independently toward the point x = 0; the second term
represents an electrostatic repulsion between each pair of charges.
The logarithmic function comes in if we assume the universe to be
two-dimensional. Let this charged gas be in thermodynamical
equilibrium at a temperature T, so that the probability density of
the positions of the N charges is given by

P(%y ..y xy) = C exp ( 4.2)

4

RT )’
where k is the Boltzmann constant. We immediately recognize that
(4.2) 1s identical to (3.40), provided B is related to the temperature by

B = (RT)™. (4.3)

This system of point charges in thermodynamical equilibrium is
called the Coulomb gas model, corresponding to the Gaussian
ensembles.

Following Dyson [1-3], we can define various expressions that
relate to our energy-level series in complete analogy with the classical
notions of entropy, specific heat, and the like. These expressions,

t Mehta and Dyson [1].
39



7 / Brownian Motion Model!

7.1. Stationary Ensembles

In Chapter 4 we exploited the idea that the probability P(x, ,..., xy),
(3.40) for the eigenvalues of a random matrix to lie in unit
intervals around the points x, ,..., xy ,

P(xy ..., xy) = Cype™®¥, 7.1

W= xp — Z In|x, —y;l, (7.2)

i<

N —
~DM=

N

is identical with the probability density of the positions of N unit
charges free to move on the infinite straight line —o0 < x << o
under the influence of forces derived from the potential energy (7.2),
according to the laws of classical mechanics, in a state of thermody-
namical equilibrium at a temperature given by

KT = B-1. (1.3)

This system of point charges in thermodynamical equilibrium is
called the stationary Coulomb gas model or simply the Coulomb gas
model, which corresponds to the Gaussian ensembles.

7.2. Nonstationary Ensembles

In this chapter we present an idea of Dyson, generalizing the
notion of a matrix ensemble in such a way that the Coulomb gas model
acquires meaning not only as a static model in timeless thermodynam-
ical equilibrium but as a dynamical system that may be in an arbitrary
nonequilibrium state changing with time. The word “time’’ in this

t Dyson [4].
84
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chapter always refers to a fictitious time which is a property of
the mathematical model and has nothing to do with real physical time.

When we try to interpret Coulomb gas as a dynamical system, we
naturally consider it first as an ordinary conservative system in which
the charges move as Newtonian particles and exchange energy with
one another only through the electric forces arising from the potential
(7.2). We then have to give meaning to the velocity of each particle
and to regulate the behavior of the random matrix H in such a way
that the eigenvalues have the normal Newtonian property of inertia.
No reasonable way of doing this has yet been found. Perhaps there
is no such way.

After considerable and fruitless efforts to develop a Newtonian
theory of ensembles, Dyson [4] discovered that the correct procedure
is quite different and much simpler. The x; should be interpreted
as positions of particles in Brownian motion [Chandrasekhar, 1;
Uhlenbeck and Ornstein, 1; Wang and Uhlenbeck, 1]. This means that
the particles have no well-defined velocities nor do they possess
inertia. Instead, they feel frictional forces resisting their motion. The
gas is not a conservative system, for it is constantly exchanging energy
with its surroundings through these frictional forces. The potential
(7.2) still operates on the particles in the following way. The particle
at x; experiences an external electric force

E(x;) = 9 —x; Y
t

8xj

1

X; — X;

(7.4)
(i)
in addition to the local frictional force and the constantly fluctuating
force giving rise to the Brownian motion.
The equation of motion of the Brownian particle at x; may be
written as
d%x; dx;
ok = 2+ B) + A), (7.5)
where f is the friction coeflicient and A(¢) 1s a rapidly fluctuating
force. For A(#) we postulate the usual properties [Uhlenbeck and
Ornstein, 1]

CA(t) A(tg) -+ A(tenia)y = 0, (7.6)
CA() A(ty) = Alty)> = ). CA() A CAt) A -, (1.7)

pairs
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and

CA() Ay = 2580t — 1), (7.8)
where the summation in (7.7) extends over all distinct ways in which
the 27 indices can be divided into z pairs.

There is nothing new in the integration of the Langevin equation
(7.5). After long enough time for the effect of the initial velocity
to become negligible, let x, , %, ,..., ¥y be the positions of the particles
at time ¢. At a later time ¢ 4 8¢ let these positions be changed to
%, + 6%, ¥, + Ox,,..., Xy + Oxy. The 8x;, j = 1,2,..., N, will in
general be different for every member of the ensemble. They are
random variables. Using (7.6), (7.7), and (7.8) we find that to the first
order in the small quantities

f8xp> = E(x;) ot, (7.9)
J(8x;)*) = 2kT ot (7.10)

and all other ensemble averages, for example, {(8x; dx,>, {(8x;)? 8x >,
{(8x;)%>, are of a higher order in oz.

An alternative description of Brownian motion is obtained
by deriving the Fokker—Planck or Smoluchowski equation. Let
P(x,, x4 ,..., xy ; t) be the time-dependent joint probability density
that the particles will be at the positions x; at time z. Assuming that
the future evolution of the system is completely determined by its
present state, with no reference to its past (that is, the process is
a Markov process), we obtain

P(ty oy xy 3 8+ ) = ff P(a; — 83y 4oy Xy — Sy 5 1)
X (% — Xy yuuey Xy — OXy 5 8Ky ,.ue, Sy 3 82) d(8xy) -+ d(8xy),  (7.11)

where ¢ under the integral sign is the probability that the positions
of the particles will change from x; — 8x, ,..., xy — 8xy tO &y ,..., Xy
in a time interval 8¢. Expanding both sides of (7.11) in a power series
of 8x; , 8¢, using (7.9) and (7.10), and going to the limit 5 — 0, we get
[Uhlenbeck and Ornstein, 1]

f%_l: =2 3”%) - 3% [E(x)) P (7.12)
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Equation 7.12describes the development of the Coulomb gas with time.
If we start from an arbitrary initial probability density P at time
t = t,, a unique solution of (7.12) will exist for all > #,. Any
solution of this sort we call a time-dependent Coulomb gas model.
Equation 7.12 implies in turn (7.9) and (7.10). To see this we
multiply both sides of (7.12) by x; and integrate over all x; . Making
the usual assumptions that P(x, ,..., xy ; 2), as well as its derivatives,
vanish quite fast on the boundary, we get on partial integration

d :
f 5 > = B, (7.13)
where
(F> = fF(x1 ey 2g) P2y ooy 2y 3 ) dy -+ dity
is the ensemble average of F. Starting at the positions x ,..., ¥y and

executing the motion for a small time interval 8¢, we find that (7.13)
is the same as (7.9). Similarly, by multiplying by x,2 and integrating
(7.12) we have

4 Gy = T 4 20, B,

which together with {(8x;)*> = {(x;2) — (x;>? yields (7.10).

Thus the descriptions of the motion by (7.9) and (7.10), and by
(7.12) are equivalent. Also there exists a unique solution to (7.12)
which is independent of time, and this time independent solution is
given by (7.1) and (7.2).

A Brownian motion model can also be constructed for the matrix H,
of which x; are the eigenvalues. The independent real parameters
HP 1 <i<j<NO<A<LB—1, which determine all the
matrix elements of H, are p = IN(N + 1) + IN(N — I)(8 — 1) in
number. Let us denote them by H,, where u is a single index that
runs from | to p and replaces the three indices 7, j, and A. Suppose
that the parameters H, have the values H, , H, ,..., H, at time ¢ and
H, + 8H,,.., H, + 8H, at a later time ¢ + 6¢. Brownian motion of
H is defined by requiring that each 8H, be a random variable with
the ensemble averages

J8H,> = —H &1, (7.14)

KEH)?> = g kT 8, (7.15)
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where

2, if i=j
— g — . b ’
g, =8P =1+38, Lo it (7.16)
All other averages are of a higher order in 8t. This is a Brownian
motion of the simplest type, the various components H, being
completely uncoupled and each being subject to a fixed simple
harmonic force. The Smoluchowski equation which corresponds to

(7.14) and (7.15) 1s

or <y, .. #P @
e ~% [fgukTW + gg—(HuP)], (7.17)

where P(H,,.., H,;t) is the time-dependent joint probability
density of H,. The solution to (7.17) which corresponds to a given
initial condition H = H’ at t = 0, is known explicitly [Uhlenbeck
and Ornstein, 1].
—gH")?
P(H, 1) = C(1 — )0 exp [ SO 2T,

T ) (7.18)

—1

g = exp [—f—] (7.19)

The solution shows that the Brownian process is invariant under
symmetry preserving unitary transformations of the matrix H; in
fact, the awkward-looking factor g, in (7.15) is put in to ensure this
invariance. When ¢t — o0, ¢ — 0, and the probability density (7.18)
tends to the stationary form,

P(H, ..., H,) — (constant) exp (%‘T— tr ), (7.20)
which is the unique time-independent solution of (7.17). Note that
with the relation (7.3) between B and the temperature kT (7.20) is
essentially the same as (2.72).

We are now in a position to state the main result of this chapter.

Theorem 7.4. When the matrix H executes a Brownian motion
according to the simple harmonic law (7.14), (7.15), starting from any
tnitial conditions whatever, its eigenvalues x;, x,,..., Xy execute a
Brownian motion that obeys the equations of motion (7.9), (7.10), and
(7.12) of the time-dependent Coulomb gas.
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To prove the theorem we need only show that (7.9) and (7.10)
follow from (7.14) and (7.15). Suppose, then, that (7.14) and (7.15)
hold. We have seen that the process described by (7.14) and (7.15)
is independent of the representation -of . Therefore we may choose
the representation so that H is diagonal at time ¢. The instantaneous
values of H, at time ¢ are then

HY =x, j=12..,N, (7.21)

and all other components are zero. At a later time ¢t + 8¢ the matrix
H + 6H is no longer diagonal and its eigenvalues x; + 8x; must be
calculated by perturbation theory. We have to the second order in3H

B-1 (S M2
S, =8HQ + Y ¥ CHs ) (7.22)

7 a0 Xi %
(i £9)

Higher terms in the perturbation series will not contribute to the
first order in 6. When we take the ensemble average on each side of
(7.22) and use (7.14), (7.21), (7.15), (7.3), and (7.4), the result is (7.9).
When we take the ensemble average of (3x;)%, only the first term on
the right side of (7.22) contributes to the order 8¢, and this term
gives (7.10) by virtue of (7.15) and (7.16). The theorem is thus
proved.

When the limit ¢ — oo is taken, Theorem 7.1 reduces to
Theorem 3.2. This new proof of Theorem 3.2 is in some respects
more illuminating. It shows how the repulsive Coulomb potential
(7.2), pushing apart each pair of eigenvalues, arises directly from
the perturbation formula (7.22). It has long been known that perturba-
tions generally split levels that are degenerate in an unperturbed
system. We now see that this splitting effect of perturbations is
quantitatively identical with the repulsive force of the Coulomb gas
model.

Theorem 7.1 is a much stronger statement than Theorem 3.2. It
shows that the electric force (7.4), acting on the eigenvalues x; , has
a concrete meaning for any matrix H whatever, not only for an
ensemble of matrices in stationary thermal equilibrium. The force
E(x;) 1s precisely proportional to the mean rate of drift of ux;
which occurs when the matrix H 1is subjected to a random
perturbation.
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7.3. Some Ensemble Averages

We now describe a general property of the time-dependent Coulomb
gas model which may be used to calculate a few ensemble averages.
Dyson observed that if G = G(x,,..., xy) i1s any function of the
positions of the charges, not depending explicitly on time, then the
time variation of (G}, the ensemble average of G, is governed by the

equation J P 2
1§ © =5 <_a§ o > ) <“_9sz > (7.23)

This equation is obtained by multiplying (7.12) throughout by G and
partial integrations; W is given by (7.2).
As a first example, choose

R=Y xp (7.24)
j
for G so that
3W 3R - . x]' 2
Frar D M i
)
2R
ox? 7

J

and (7.23) becomes
OCR) 2Ry + N(N — 1) + 2kTN

ot
with
R, =iN(N — 1) + kTN. (7.26)
The solution of (7.25) is
(R = Rg* + Ru(1 — ¢¥), (7.27)

where ¢ is given by (7.19) and R, is the value of (R) at t = Q.
Equation 7.27 shows that the ensemble average (R)> approaches its
equilibrium value R, with exponential speed as t — co.

Next take G = W in (7.23), so that
oW\ 1 2%,
(6x,-) - ; [(xj—xi) - xj—xi]
(i #4)
+2 0 [ = x)( — )]t + a2 (7.28)
iyl

i,
(i,j,1 all
ditterent)
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and -
0
e RO (7.29)
(i#9)
On performing a summation over j the second term in (7.28) drops
out (cf. Appendix A.20), whereas the second term in the first bracket
gives —2N(N — ). Substituting in (7.23) and simplifying, we get

7 3<8VtV> =(kT —1) ¥ x —x)? + (N2 — N + NkT) — g ).

T3]
(i#j)

(7.30)

For the stationary Coulomb gas at temperature k7 the left side of
(7.30) vanishes and (7.26) may be used on the right. Thus we find a
““virial theorem” for the stationary gas:
oy NV 1)

,Z, (% — %)™ = 30 —FT) (7.31)

)
The probability density of eigenvalues becomes proportional to
| x; — x; |?, when two eigenvalues x;, x; come close together. The
ensemble average of (x; — x;)~% is therefore defined only for § > 1
and (7.30) and (7.31) hold only for kT < 1.

An especially interesting case, 8 = 1, requires a passage to the

limit in (7.30). As kT — 1, we have for any fixed value of 4

lim(kT — 1) | AA |y [B-2 dy = lim(RT — 1)(8 — 1)-* 246~
= 2. (1.32)
We obtain the correct limit in (7.30) if we replace
(BT — 1)(x; — ;)
with
—2(x; — x;)71 8(x; — x,), (7.33)
which has a well-defined meaning as an ensemble average when

kT = 1, for the probability density then contains a factor | x; — x; {;
(7.30) thus becomes in the limit
aw _

f i —2 Z Ay — 2 718, — x3)) +N2—;<x,~2>, kT = 1.

47
(t#£7)

(7.34)
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The corresponding “‘virial theorem” is
Y x — x) 8w — %)) = IN(N — 1), kT =1 (7.35)
i
(i#4)

for the stationary gas.



